2022
DOI: 10.1007/978-3-031-15791-2_10
|View full text |Cite
|
Sign up to set email alerts
|

Dynamically Self-adjusting Gaussian Processes for Data Stream Modelling

Abstract: One of the major challenges in time series analysis are changing data distributions, especially when processing data streams. To ensure an up-to-date model delivering useful predictions at all times, model reconfigurations are required to adapt to such evolving streams. For Gaussian processes, this might require the adaptation of the internal kernel expression. In this paper, we present dynamically self-adjusting Gaussian processes by introducing Event-Triggered Kernel Adjustments in Gaussian process modelling… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 15 publications
0
0
0
Order By: Relevance