Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The study of bubble growth and collapse is of great significance in the context of sustainability due to its influence on numerous energy-related processes and technologies. Understanding the dynamics of bubble behavior is vital for optimising heat transfer efficiency, which has an energetic role in improving the performance of sustainable systems such as nuclear reactors, thermal inkjet printing, and nucleate boiling. Indeed, researchers can progress strategies to enhance the efficiency of these technologies by analysing the parameters influencing bubble growth and collapse, which can lead to reduced energy consumption and environmental impact. Although several theoretical models and experimental investigations have been achieved in the past to inspect bubble growth and collapse, a thorough review and critical assessment of the studies conducted have not yet been achieved. This review aims to provide a comprehensive understanding of the relationship between bubble dynamics and sustainability, highlighting the potential for further research and development in this area. Specifically, the scope and limitations of past research on bubble growth and collapse is conducted to fill this gap in the open literature. The review covers both numerical and experimental studies of bubble growth and collapse in a wide set of innovative industrial applications including nuclear reactors, thermal inkjet printing, nucleate boiling, hydrodynamic erosion, and ultrasonic and medicinal therapy. The current review also attempts to illustrate and evaluate the numerical methods used and underlines the most relevant results from the studies that were looked at in order to provide researchers with a clear picture of the growth and collapse of bubbles in different applications. The results give a precise understanding of the dynamics of bubble growth and collapse and the related temperature change and cumulative heat transmission from the thermal boundary layer. Additionally, it has been demonstrated that simulation-based models can effectively predict transport coefficients. However, the review observes a number of limitations of the past research on bubble growth and collapse. Due to numerical instability, very little work with respect to dynamic modelling has been carried out on the mechanisms of bubble collapse. Accordingly, a number of recommendations are made for the improvement of heat transmission during bubble growth and collapse. Specifically, future criteria for the highest heat transmission will demand more precise experimental and numerical approaches.
The study of bubble growth and collapse is of great significance in the context of sustainability due to its influence on numerous energy-related processes and technologies. Understanding the dynamics of bubble behavior is vital for optimising heat transfer efficiency, which has an energetic role in improving the performance of sustainable systems such as nuclear reactors, thermal inkjet printing, and nucleate boiling. Indeed, researchers can progress strategies to enhance the efficiency of these technologies by analysing the parameters influencing bubble growth and collapse, which can lead to reduced energy consumption and environmental impact. Although several theoretical models and experimental investigations have been achieved in the past to inspect bubble growth and collapse, a thorough review and critical assessment of the studies conducted have not yet been achieved. This review aims to provide a comprehensive understanding of the relationship between bubble dynamics and sustainability, highlighting the potential for further research and development in this area. Specifically, the scope and limitations of past research on bubble growth and collapse is conducted to fill this gap in the open literature. The review covers both numerical and experimental studies of bubble growth and collapse in a wide set of innovative industrial applications including nuclear reactors, thermal inkjet printing, nucleate boiling, hydrodynamic erosion, and ultrasonic and medicinal therapy. The current review also attempts to illustrate and evaluate the numerical methods used and underlines the most relevant results from the studies that were looked at in order to provide researchers with a clear picture of the growth and collapse of bubbles in different applications. The results give a precise understanding of the dynamics of bubble growth and collapse and the related temperature change and cumulative heat transmission from the thermal boundary layer. Additionally, it has been demonstrated that simulation-based models can effectively predict transport coefficients. However, the review observes a number of limitations of the past research on bubble growth and collapse. Due to numerical instability, very little work with respect to dynamic modelling has been carried out on the mechanisms of bubble collapse. Accordingly, a number of recommendations are made for the improvement of heat transmission during bubble growth and collapse. Specifically, future criteria for the highest heat transmission will demand more precise experimental and numerical approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.