2023
DOI: 10.54327/set2023/v3.i1.65
|View full text |Cite
|
Sign up to set email alerts
|

Dynamics and Bifurcation for One Non-linear System

Abstract: In this paper, we observed the ordinary differential equation (ODE) system and determined the equilibrium points. To characterize them, we used the existing theory developed to visualize the behavior of the system. We describe the bifurcation that appears, which is characteristic of higher-dimensional systems, that is when a fixed point loses its stability without colliding with other points. Although it is difficult to determine the whole series of bifurcations that lead to chaos, we can say that it is a comm… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?