The kinematic design and navigation control of a new autonomous mobile manipulator for uneven terrain is presented in this work. An innovative suspension system's design is based on the kinematic synthesis of an adaptable, passive mechanism that compensates for irregularities in the terrain and facilitate the control of the robotic platform using cameras. The proposed mobile robot suspension consists of two pairs of bogies joined by a crank-slider mechanism that allows the robot to adapt to the terrain irregularities. The mobile robot is also equipped with a robotic manipulator, of which a synthesis, simulation, and experimental validation are presented while manipulation is accomplished during movements on rough terrain. The proposed mobile robot has been fabricated using additive manufacturing (AM) techniques. A linear camera space manipulation (LCSM) control system has been developed and implemented to conduct experimental tests along uneven terrain. This mobile manipulator has been designed to transverse uneven terrain so that the loading platform is kept horizontal while crossing obstacles up to one-third of the size of its wheels. This feature allows the onboard cameras to stay oriented towards the target. The vision-based paradigm that enables the control of this mobile manipulator allows to estimate the position and orientation of its end effector and update the trajectory of the manipulator along the path towards the target. The experiments show a final precision for engagement of a pallet within +/− 2.5 mm in position and +/− 2 degrees in orientation.