This is the accepted version of the paper.This version of the publication may differ from the final published version. applied to 2D floating bodies), the complex unstructured mesh is generated only once at the beginning of calculation and is moved to conform to the motion of boundaries at other time steps by using a robust spring analogy method specially suggested for this kind of problems, avoiding the necessity of high cost remeshing.
Permanent repository linkIn order to tackle challenges associated with 3D floating bodies, several new numerical techniques are developed in this paper. These include the technique for moving the mesh near body surfaces, the scheme for calculating velocity on 3D body surfaces and the ISITIMFB-M (Iterative Semi-Implicit Time IntegrationMethod for Floating Bodies -Modified) procedure that is more efficient for dealing with the full coupling between waves and bodies. Using the newly developed techniques and methods, various cases for 3Dfloating bodies with motions of up to 6 degrees of freedom (DoFs) are simulated. These include a SPAR platform, a barge-type floating body and one or two Wigley Hulls in head seas or in oblique waves. For some selected cases, the numerical results are compared with experimental data available in the public domain and satisfactory agreements are achieved. Many results presented in this paper have not been found elsewhere to the best knowledge of the authors.