The lifting behavior of turbulent nonpremixed coaxial jet flames was investigated experimentally as a function of the center jet Reynolds number, annular-to-center jet velocity ratio, acoustic frequency, and acoustic amplitude, all with and without transverse acoustic disturbances acting on the flames situated at a pressure antinode. Global lifting regimes were mapped and consisted of attached flames, periodically lifted flames, and permanently lifted flames. With one exception, all flames were attached in the absence of acoustics and lifted only because of the applied acoustic excitation. The exception occurred at the highest Reynolds number and velocity ratio, where the flames were unconditionally lifted in all cases. Between these two extremes, a range of lifting regimes was observed. Lower applied frequencies and smaller amplitudes were found to generally promote attachment to the burner. Flow visualizations using high-speed Schlieren and [Formula: see text] chemiluminescence imaging revealed a lateral spreading effect near the jet exit. The lateral spreading was hypothesized to be caused by an axially oriented counterflow collision between the downstream flowing jets and presumed local upstream portion of the acoustic velocity fluctuations. Physical mechanisms were hypothesized based on this observation, which appear to consistently explain most of the observed behavior.