We study the dynamics of a two-level quantum system interacting with a single frequency electromagnetic field and a stochastic magnetic field, with and without making the rotating wave approximation (RWA). The transformation to the rotating frame does not commute with the stochastic Hamiltonian if the stochastic field has nonvanishing components in the transverse direction, hence, applying the RWA requires transformation of the stochastic terms in the Hamiltonian. For Gaussian white noise, the master equation is derived from the stochastic Schrödinger-Langevin equations, with and without the RWA. With the RWA, the master equation for the density matrix has Lindblad terms with coefficients that are time-dependent (i.e., the master equation is time-local). An approximate analytic expression for the density matrix is obtained with the RWA. For Ornstein-Uhlenbeck noise, as well as other types of colored noise, in contradistinction to the Gaussian white noise case, the non-commutation of the RWA transformation and the noise Hamiltonian can significantly affect the RWA dynamics when ωτcorr 1, where ω is the electromagnetic field frequency and τcorr is the stochastic magnetic field correlation time.