The crowded environment of biological systems such as
the interior
of living cells is occupied by macromolecules with a broad size distribution.
This situation of polydispersity might influence the dependence of
the diffusive dynamics of a given tracer macromolecule in a monodisperse
solution on its hydrodynamic size and on the volume fraction. The
resulting size dependence of diffusive transport crucially influences
the function of a living cell. Here, we investigate a simplified model
system consisting of two constituents in aqueous solution, namely,
of the proteins bovine serum albumin (BSA) and bovine polyclonal gamma-globulin
(Ig), systematically depending on the total volume fraction and ratio
of these constituents. From high-resolution quasi-elastic neutron
spectroscopy, the separate apparent short-time diffusion coefficients
for BSA and Ig in the mixture are extracted, which show substantial
deviations from the diffusion coefficients measured in monodisperse
solutions at the same total volume fraction. These deviations can
be modeled quantitatively using results from the short-time rotational
and translational diffusion in a two-component hard sphere system
with two distinct, effective hydrodynamic radii. Thus, we find that
a simple colloid picture well describes short-time diffusion in binary
mixtures as a function of the mixing ratio and the total volume fraction.
Notably, the self-diffusion of the smaller protein BSA in the mixture
is faster than the diffusion in a pure BSA solution, whereas the self-diffusion
of Ig in the mixture is slower than in the pure Ig solution.