Clinically
used bleomycin A5 has been employed in a
study of double-strand cleavage of a library of 10 hairpin DNAs originally
selected on the basis of their strong binding to bleomycin. Each of
the DNAs underwent double-strand cleavage at more than one site, and
all of the cleavage sites were within, or in close proximity to, an
eight-base-pair region of the duplex that had been randomized to create
the original library. A total of 31 double-strand cleavage sites were
identified on the 10 DNAs, and 14 of these sites were found to represent
coupled cleavage sites, that is, events in which one of the two strands
was always cleaved first, followed by the associated site on the opposite
strand. Most of these coupled sites underwent cleavage by a mechanism
described previously by the Povirk laboratory and afforded cleavage
patterns entirely analogous to those reported. However, at least one
coupled cleavage event was noted that did not conform to the pattern
of those described previously. More surprisingly, 17 double-strand
cleavages were found not to result from coupled double-strand cleavage,
and we posit that these cleavages resulted from a new mechanism not
previously described. Enhanced double-strand cleavages at these sites
appear to be a consequence of the dynamic nature of the interaction
of Fe·BLM A5 with the strongly bound hairpin DNAs.