2018
DOI: 10.1186/s13662-018-1748-y
|View full text |Cite
|
Sign up to set email alerts
|

Dynamics of bright and dark multi-soliton solutions for two higher-order Toda lattice equations for nonlinear waves

Abstract: Discrete N-fold Darboux transformation (DT) is used to derive new bright and dark multi-soliton solutions of two higher-order Toda lattice equations. Propagation and elastic interaction structures of such soliton solutions are shown graphically. The details of their evolutions are studied via numerical simulations. Numerical results show the accuracy of our numerical scheme and the stable evolutions of such bright and dark multi-solitons without a noise. To compare the numerical evolution results with the clas… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 57 publications
(201 reference statements)
0
1
0
Order By: Relevance
“…A set of systematic methods have been used in the literature to obtain reliable treatments of nonlinear evolution equations. So far, researchers have established several methods to find the exact solutions, including the inverse scattering transform [1], the Bäcklund transformation [2][3][4][5], the Darboux transformation [6][7][8][9][10][11][12][13][14], the Riemann-Hilbert approach [15][16][17] and Hirota's bilinear method [18][19][20][21][22][23][24][25][26][27][28], Jacobian elliptic function method and modified tanh-function method [29][30][31][32][33]. Each of these approaches has its features, Hirota's bilinear method is widely popular due to its simplicity and directness.…”
Section: Introductionmentioning
confidence: 99%
“…A set of systematic methods have been used in the literature to obtain reliable treatments of nonlinear evolution equations. So far, researchers have established several methods to find the exact solutions, including the inverse scattering transform [1], the Bäcklund transformation [2][3][4][5], the Darboux transformation [6][7][8][9][10][11][12][13][14], the Riemann-Hilbert approach [15][16][17] and Hirota's bilinear method [18][19][20][21][22][23][24][25][26][27][28], Jacobian elliptic function method and modified tanh-function method [29][30][31][32][33]. Each of these approaches has its features, Hirota's bilinear method is widely popular due to its simplicity and directness.…”
Section: Introductionmentioning
confidence: 99%