In this study, we analyze a cancer model which includes the interactions among tumor cells, healthy host cells and effector immune cells. The model with continuous case has been studied in the literature and it has been shown that it exhibits chaotic behavior. In this paper, we aim to build a better understanding of how both discrete and continuous times affect the dynamic behavior of the tumor growth model. So, we reconsider the model as a system of differential equations with piecewise constant argument. To analyze dynamical behavior of the model, we consider the solution of the system in a certain subinterval which leads to the system of difference equations. Some theoretical results are obtained for local behavior of the system. In addition, we study chaotic dynamic of the system through Neimark-Sacker bifurcation by using Lyapunov exponents