Steady-state and ultrafast transient absorption spectra were obtained for a series of conformationally-constrained, isomerically pure polyenes with 5–23 conjugated double bonds (N). These data and fluorescence spectra of the shorter polyenes reveal the N dependence of the energies of six 1Bu+ and two 1Ag− excited states. The 1Bu+ states converge to a common infinite polyene limit of 15,900 ± 100 cm−1. The two excited 1Ag− states, on the other hand, exhibit a large (~9000 cm−1) energy difference in the infinite polyene limit, in contrast to the common value previously predicted by theory. EOM-CCSD ab-initio and MNDO-PSDCI semi-empirical MO theories account for the experimental transition energies and intensities. The complex, multistep dynamics of the 11Bu+ → 21Ag− → 11Ag− excited state decay pathways as a function of N are compared with kinetic data from several natural and synthetic carotenoids. Distinctive transient absorption signals in the visible region, previously identified with S* states in carotenoids, also are observed for the longer polyenes. Analysis of the lifetimes of the 21Ag− states, using the energy gap law for nonradiative decay, reveals remarkable similarities in the N dependence of the 21Ag− decay kinetics of the carotenoid and polyene systems. These findings are important for understanding the mechanisms by which carotenoids carry out their roles as light-harvesting molecules and photoprotective agents in biological systems.