IMPLOSION-DRIVEN TECHNIQUE TO CREATE FAST SHOCK WAVES IN HIGH-DENSITY GASAbstract. Pressurized tubes surrounded by either one or two layers (separated by a secondary tube) of sensitized nitromethane and encased in a thick-walled tube (the tamper) were imploded. The distance between the detonation wave in the explosive and shock wave in the innermost tube were measured (the standoff). A simple model based on hoop stress and acoustic interactions between the tubing was developed and used to predict the standoff distance. At low initial pressures (on the order of 7 MPa), results indicate that the secondary tube and two layers of explosive did not prove to significantly increase the standoff. However, at higher pressures (on the order of 10 MPa), standoff was noticeably greater when the secondary tube was inserted between the pressurized tube and the tamper. The measured values are in reasonable agreement with the predictions of the model.