A cam-driven mechanical system applied for pin assembly of connectors of electrical devices is studied in this paper. Three cooperative cams are involved in the tasks of approaching, cutting, insertion, and restoring. In order to meet the demanded productivity growth, the operation speed tends to be elevated. However, high running speeds usually cause deficiencies of pin dropping and inaccurate positioning. Diagnosis is therefore conducted to explore their physical reasons so that modification of future mechanical design can be made. Frequency responses of experimental measurements show greater natural frequency and system stiffness caused by nonlinear dynamics for higher operation speed. It also appears that the clamping force is reduced and drift of the locked pin’s location is induced for higher running speed. In addition, separation of the fixture system induced by contact oscillation generates clearance larger than the thickness of the pin. Based on the mathematical models obtained from the technique of system identification, deeper insight of the mechanical system and future system improvement can be highly expected.