In this article, the impact of different hydrogen configurations and their evolution on the extent and kinetics of light-and elevated-temperature-induced degradation (LeTID) is investigated in float-zone silicon via charge carrier lifetime measurements, lowtemperature Fourier-transform infrared spectroscopy, and fourpoint-probe resistance measurements. Degradation conditions were light soaking at 77 °C and 1 sun-equivalent illumination intensity and dark anneal at 175 °C. The initial configuration of hydrogen is manipulated by varying the wafer thickness, the cooling ramp of the fast-firing process, and the dopant type (B-or P-doped). We find lower hydrogen concentrations in thinner samples and samples with a slower cooling ramp. This suggests that hydrogen diffuses out of the sample during the cool-down, which strongly affects the final concentration of hydrogen molecules H 2 , and to a smaller degree the concentration of boron-hydrogen (BH) pairs. A regeneration of potential LeTID defects and a presumed LeTID degradation during dark annealing is found in n-type Si. In p-type Si, the LeTID extent was found to scale with H 2 , suggesting a direct link between both. The temporal evolution of BH pairs, LeTID degradation/regeneration, and surface degradation depends on wafer thickness and the cooling ramp of the fast-firing process. Based upon these findings, we formulate a theory of the hydrogen-related