Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BackgroundIncorporation of cover crop (cc) shoot and root biomass can have different effects on nitrogen (N) dynamics and the transformation of soil‐derived N and cc N.AimsThe objective was to determine the effects of different ccs, cc compartments (roots and shoots), and pretreatment of cc biomass (fresh vs. dried) on mineralization processes and on the transformation of soil and cc N following incorporation into a silty loam soil.MethodsSoil columns with incorporated 15N‐labeled root and shoot biomass of two cc species (winter rye and oil radish) and different pretreatments (dried and fresh) were incubated for 70 days at a constant temperature and soil moisture (8°C, 40% water‐filled pore space). Carbon and N transformation dynamics were determined repeatedly, distinguishing between N originating from cc biomass and from soil.ResultsNet CO2 emission was related to the amount of soluble cell components added with ccs. Net N mineralization was negatively related to the C:N ratio of cc biomass. The incorporation of dried cc biomass caused higher initial soil respiration and N immobilization than fresh biomass. All treatments with cc incorporation showed increased N2O emission. Emitted N2O‐N consisted mainly of cc N (55%–57%) in treatments with fresh shoot biomass, whereas soil N was the main source of N2O (75%) in the treatment with fresh oil radish roots. Recovery of cc 15N was affected by crop compartment and pretreatment. At the end of the incubation, it was 17.5%–42.3% in soil NO3−, 0.1%–8.1% in microbial biomass N, and less than 0.23% of cc N was found in cumulative N2O emission.ConclusionThe incorporation of cc roots and shoots had different effects on N mobilization and immobilization processes and on the partitioning of cc N. These processes can be influenced significantly by pretreatment of the added plant biomass (dried vs. fresh).
BackgroundIncorporation of cover crop (cc) shoot and root biomass can have different effects on nitrogen (N) dynamics and the transformation of soil‐derived N and cc N.AimsThe objective was to determine the effects of different ccs, cc compartments (roots and shoots), and pretreatment of cc biomass (fresh vs. dried) on mineralization processes and on the transformation of soil and cc N following incorporation into a silty loam soil.MethodsSoil columns with incorporated 15N‐labeled root and shoot biomass of two cc species (winter rye and oil radish) and different pretreatments (dried and fresh) were incubated for 70 days at a constant temperature and soil moisture (8°C, 40% water‐filled pore space). Carbon and N transformation dynamics were determined repeatedly, distinguishing between N originating from cc biomass and from soil.ResultsNet CO2 emission was related to the amount of soluble cell components added with ccs. Net N mineralization was negatively related to the C:N ratio of cc biomass. The incorporation of dried cc biomass caused higher initial soil respiration and N immobilization than fresh biomass. All treatments with cc incorporation showed increased N2O emission. Emitted N2O‐N consisted mainly of cc N (55%–57%) in treatments with fresh shoot biomass, whereas soil N was the main source of N2O (75%) in the treatment with fresh oil radish roots. Recovery of cc 15N was affected by crop compartment and pretreatment. At the end of the incubation, it was 17.5%–42.3% in soil NO3−, 0.1%–8.1% in microbial biomass N, and less than 0.23% of cc N was found in cumulative N2O emission.ConclusionThe incorporation of cc roots and shoots had different effects on N mobilization and immobilization processes and on the partitioning of cc N. These processes can be influenced significantly by pretreatment of the added plant biomass (dried vs. fresh).
Due to the heterogeneous nature of soil pore structure, processes such as nitrification and denitrification can occur simultaneously at microscopic levels, making prediction of small-scale nitrous oxide (N2O) emissions in the field notoriously difficult. We assessed N2O+N2 emissions from soils under maize (Zea mays L.), switchgrass (Panicum virgatum L.), and energy sorghum (Sorghum bicolor L.), three potential bioenergy crops in order to identify the importance of different N2O sources to microsite production, and relate N2O source differences to crop-associated differences in pore structure formation. The combination of isotopic surveys of N2O in the field during one growing season and X-ray computed tomography (CT) enabled us to link results from isotopic mappings to soil structural properties. Further, our methodology allowed us to evaluate the potential for in situ N2O suppression by biological nitrification inhibition (BNI) in energy sorghum. Our results demonstrated that the fraction of N2O originating from bacterial denitrification and reduction of N2O to N2 is largely determined by the volume of particulate organic matter occluded within the soil matrix and the anaerobic soil volume. Bacterial denitrification was greater in switchgrass than in the annual crops, related to changes in pore structure caused by the coarse root system. This led to high N-loses through N2 emissions in the switchgrass system throughout the season a novel finding given the lack of data in the literature for total denitrification. Isotopic mapping indicated no differences in N2O-fluxes or their source processes between maize and energy sorghum that could be associated with the release of BNI by the investigated sorghum variety. The results of this research show how differences in soil pore structures among cropping systems can determine both N2O production via denitrification and total denitrification N losses in situ.
Denitrification is a major source of the greenhouse gas N2O. As a result of spatial heterogeneity of organic carbon, oxygen and nitrate, denitrification is observed even under relatively dry conditions. However, it is unclear whether denitrification potentials of microbial communities exhibit spatial patterns relative to variations in distance to soil pores facilitating oxygen exchange and nutrient transfer. Thus, we determined genetic and process-level denitrification potentials in two contrasting soils, a cropland and a grassland, with respect to the distance to air-filled pores. An X-ray computed tomography aided sampling strategy was applied for precise sampling of soil material. Process-level and genetic denitrification potentials in both soils were spatially variable, and similar with respect to distance to macropores. In the cropland soil, a minor increase of process-level potentials with distance to pores was observed and related to changes in NO3− rather than oxygen availability. Genetic denitrification potentials after the short-term incubations revealed a certain robustness of the local community. Thus, distance to macropores has a minor impact on denitrification potentials relative to the observed spatial variability. Our findings support the notion that the impact of macropore induced changes of the environmental conditions in soil does not overrule the high spatial variability due to other controlling factors, so that the rather minor proportion of spatial heterogeneity of functional genes and activity potentials related to macropore distances in soil need not be considered explicitly in modelling denitrification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.