[1] Abstract: Suprasubduction zone (SSZ) ophiolites display a consistent sequence of events during their formation and evolution that suggests that they form in response to processes that are common to all such ophiolites. This sequence includes the following: (1) birth, which entails the formation of the ophiolite above a nascent or reconfigured subduction zone; this stage is typically characterized by the eruption of arc tholeiite lavas and the formation of layered gabbros and sheeted dike complex; (2) youth, during which is continued melting of refractory asthenosphere (depleted during birth) occurs in response to fluid flux from the subducting slab, with extensional deformation of the older plutonic suite, eruption of refractory lavas, and the intrusion of wehrlite-pyroxenite; (3) maturity, with the onset of semistable arc volcanism, typically calc-alkaline, as the subduction zone matures and stabilizes, and the intrusion of quartz diorite and eruption of silicic lavas; and (4) death, which is the sudden demise of active spreading and ophiolite-related volcanism, which in many cases is linked to collision with an active spreading center and the onset of shallow underthrusting of the buoyant spreading axis; expressed as dikes and lavas with oceanic basalt compositions that crosscut or overlie rocks of the older suites; (5) resurrection, with emplacement by obduction onto a passive margin or accretionary uplift with continued subduction. The early stages (1± 3) may be diachronous, and each stage may overlap in both time and space. The existence of this consistent progression implies that ophiolite formation is not a stochastic event but is a natural consequence of the SSZ tectonic setting.