Solutions to nonlinear evolution equations exhibit a wide range of interesting phenomena such as shocks, solitons, recurrence, and blow-up. As an aid to understanding some of these features, the solutions can be viewed as analytic functions of a complex space variable. The dynamics of poles and branch point singularities in the complex plane can often be associated with the aforementioned features of the solution. Some of the computational and analytical results in this area are surveyed here. This includes a first attempt at computing the poles in the famous Zabusky–Kruskal experiment that lead to the discovery of the soliton.