The RAS‐association domain family, commonly referred to as RASSF, is a family of 10 members (RASSF1‐10) implicated in a variety of key biological processes, including cell cycle regulation, apoptosis and microtubule stability. Furthermore, RASSFs have been implicated in tumorigenesis and several family members are now thought to be tumor suppressors. As opposed to the KRAS oncogene, for which mutational activation is frequent in colorectal cancer (CRC), RASSFs are found to be silenced mainly by aberrant promoter methylation. In particular, RASSF1A, RASSF2 and RASSF5 methylation has been associated with CRC development, though the mechanisms of action remain poorly understood. This review focus on the current knowledge of RASSF inactivation in CRC, particularly RASSF1A, and on the implications RASSFs may have as potential biomarkers and for the development of new targeted therapies for CRC.