In the present work, by employing the field equations given in [15] and the extended PLK method derived in [9], we have studied the head-on collision of solitary waves in arteries. Introducing a set of stretched coordinates which include some unknown functions characterizing the higher order dispersive effects and the trajectory functions to be determined from the removal of possible secularities that might occur in the solution. Expanding these unknown functions and the field variables into power series of the smallness parameter and introducing the resulting expansions into the field equations we obtained the sets of partial differential equations. By solving these differential equations and imposing the requirements for the removal of possible secularities we obtained the speed correction terms and the trajectory functions. The results of our calculation show that both the evolution equations and the phase shifts resulting from the head-on collision of solitary waves are quite different from those of Xue [15], who employed the incorrect formulation of Su and Mirie [4]. As opposed to the result of previous works on the same subject, in the present work the phase shifts depend on the amplitudes of both colliding waves.