Host factor pathways are known to be essential for hepatitis C virus (HCV) infection and replication in human liver cells. To search for novel host factor proteins required for HCV replication, we screened a subgenomic genotype 1b replicon cell line (Luc-1b) with a kinome and druggable collection of 20,779 siRNAs. We identified and validated several enzymes required for HCV replication, including class III phosphatidylinositol 4-kinases (PI4KA and PI4KB), carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and mevalonate (diphospho) decarboxylase. Knockdown of PI4KA could inhibit the replication and/or HCV RNA levels of the two subgenomic genotype 1b clones (SG-1b and Luc-1b), two subgenomic genotype 1a clones (SG-1a and Luc-1a), JFH-1 genotype 2a infectious virus (JFH1-2a), and the genomic genotype 1a (FL-1a) replicon. In contrast, PI4KB knockdown inhibited replication and/or HCV RNA levels of Luc-1b, SG-1b, and Luc-1a replicons. The small molecule inhibitor, PIK93, was found to block subgenomic genotype 1b (Luc-1b), subgenomic genotype 1a (Luc-1a), and genomic genotype 2a (JFH1-2a) infectious virus replication in the nanomolar range. PIK93 was characterized by using quantitative chemical proteomics and in vitro biochemical assays to demonstrate PIK93 is a bone fide PI4KA and PI4KB inhibitor. Our data demonstrate that genetic or pharmacological modulation of PI4KA and PI4KB inhibits multiple genotypes of HCV and represents a novel druggable class of therapeutic targets for HCV infection.Hepatitis C virus (HCV) causes liver disease in humans, including chronic hepatitis, cirrhosis, and hepatocellular carcinoma (52). The HCV genome is a single-stranded RNA molecule where both the 5Ј and the 3Ј untranslated region (UTR) contain highly conserved RNA structures necessary for polyprotein translation and genome replication (43). The processed polyprotein yields at least three structural proteins and six nonstructural proteins. The structural proteins include the core, which forms the viral nucleocapsid, and the envelope glycoproteins E1 and E2. The viral proteins processed by signal peptidases form viral particles that assemble at the endoplasmic reticulum (ER) and/or Golgi bodies and are released from the host cell by viral budding. The structural protein coding regions are separated from nonstructural proteins by the short membrane peptide p7, thought to function as an ion channel (43, 53). The nonstructural proteins NS2, NS3/4A, NS5A, and NS5B are involved in coordinating the intracellular processes of the virus life cycle, including polyprotein processing and viral RNA replication (34).The Luc-1b cell is a human hepatoma cell line (Huh7) that contains a genotype 1b HCV subgenomic replicon, a luciferase reporter, and a neomycin selection marker, allowing HCV replication to be studied both in vitro and in vivo (8,36). This subgenomic replicon lacks the coding regions for NS2 and the structural proteins but contains the nonstructural proteins in cis, which are required for replicat...