Purpose
Radiation remains a mainstay for the treatment of non-metastatic head and neck squamous cell carcinoma (HNSCC), a malignancy characterized by a high rate of PI3K/mTOR signaling axis activation. We investigated the ATP-competitive dual PI3K/mTOR inhibitor, PF-05212384, as a radiosensitizer in pre-clinical HNSCC models.
Experimental Design
Extent of radiation enhancement of two HNSCC cell lines (UMSCC1-wtP53, UMSCC46-mtP53) and normal human fibroblast (1522) was assessed by in vitro clonogenic assay with appropriate target inhibition verified by immunoblotting. Radiation induced DNA damage repair was evaluated by γH2AX western blots with mechanism of DNA-DSB repair abrogation investigated by cell cycle analysis, immunoblotting, and RT-PCR. PF-05212384 efficacy in vivo was assessed by UMSCC1 xenograft tumor regrowth delay, xenograft lysate immunoblotting, and tissue section immunohistochemistry.
Results
PF-05212384 effectively inhibited PI3K and mTOR resulting in significant radiosensitization of exponentially growing and plateau-phase cells with 24 hr treatment following irradiation, and variable radiation enhancement with 24 hr treatment prior to irradiation. Tumor cells radiosensitized to a greater extent than normal human fibroblasts. Post-irradiation PF-05212384 treatment delays γ-H2AX foci resolution. PF-05212384 24 hr exposure resulted in an evident G1/S phase block in p53 competent cells. Fractionated radiation plus IV PF-05212384 synergistically delayed nude-mice bearing UMSCC1 xenograft regrowth, with potential drug efficacy biomarkers identified, including pS6, pAkt, p4EBP1, and Ki67.
Conclusions
Taken together, our results of significant radiosensitization both in vitro and in vivo validates the PI3K/mTOR axis as a radiation modification target and PF-05212384 as a potential clinical radiation modifier of non-metastatic HNSCC.