A study of the mechanism of and metabolic regulation of brown adipose tissue (BAT) production is important for improving the survival rate of young animals. In the present study, we observed that perirenal adipose tissue in goats undergoes a rapid BAT whitening after birth. However, the underlying regulatory mechanism remains unknown. To address this further, we investigated the role of miRNAs in regulating the whitening process of BAT in goats. First, we identified the dynamic expression profiles of miRNAs during the whitening of BAT in Dazu black goat using RNA-seq. We identified a total of 1374 miRNAs, including 408 exist miRNAs, 693 known miRNAs, and 273 novel miRNAs. By analysis of the differentially expressed miRNAs (DE miRNAs), we found that 102 highly expressed miRNAs, including chi-miR-144-3p, chi-miR-144-5p, chi-miR-378-5p, chi-miR-136-3p, chi-miR-381, chi-miR-323b, chi-miR-1197-3p, chi-miR-411b-3p, and chi-miR-487a-3p, were enriched in BAT. In addition, 60 highly expressed miRNAs, including chi-miR-184, chi-miR-193a, chi-miR-193b-3p, chi-let-7c-5p, and chi-let-7e-5p, were enriched in white fat-like tissue. An analysis of miRNAs that were linearly down-regulated (profile 0) or linearly up-regulated (profile 19) over the D0 – D28 period found that these DE miRNAs were mainly enriched in the Hippo signaling pathway, Cytokine-cytokine receptor interactions, and the TGF-beta signaling pathway. Furthermore, we confirmed that chi-let-7e-5p promotes the proliferation and differentiation of brown adipocytes. These results should facilitate a better understanding of the molecular regulation of miRNAs involved in BAT whitening in goats.