As a nonlinear dynamic system, the dynamic equation of triboelectric nanogenerator system is not only difficult to accurately establish, but also difficult to solve. The output signals of triboelectric nanogenerator system depends on the initial conditions of the system, which reflects the dynamic behavior of the system. Currently, there is little research on using the output signals to study the dynamic behavior of triboelectric nanogenerator system. Therefore, a dynamic simulation model of a freestanding triboelectric nanogenerator (F-TENG) system was established using COMSOL software. The mathematical model of the F-TENG system was fitted. Using chaos theory and its phase-space reconstruction technology, the phase-space trajectories of the F-TENG system were reconstructed through voltage signals under external factors, and the dynamic behavior of the F-TENG system was discussed and studied. Finally, validation experiments were carried out. The research shows that with the variation of internal factors and operating frequency, the mathematical model of the F-TENG system remains basically unchanged, and the variation law of output characteristics also remains basically unchanged. The F-TENG system is in periodic motion; With the variation of external factors such as resistance and friction layer spacing, the mathematical model of the F-TENG system will evolve in a complex direction, and the output characteristics will gradually distort. The F-TENG system will evolve from periodic motion to chaotic motion. The research results not only reveal the dynamic behavior and enrich the nonlinear dynamic theory of triboelectric nanogenerator system, but also provide theoretical guidance for increasing the working bandwidth and stability of triboelectric nanogenerator system.