In order to investigate the process of twinning growth, the nucleation of twinning dislocation loops on the coherent boundary of a Tantalum twin superlattice is studied via a molecular dynamics approach. We get homogeneous nucleation rates by means of a stationarity test and the mean first-passage method. We study their dependence on driving force and temperature in a framework given by the Kolgomorov-Johnson-Mehl-Avrami (KJMA) theory. Correspondingly, the contribution to the twinning growth dictated by this nucleation mechanism, as compared to the pole mechanism, is discussed. The homogeneous loop nucleation and growth mechanism can be relevant to twinning in high strain-rate experiments as in shock waves.