BACKGROUND AND PURPOSEOpioids, such as morphine, are the most effective treatment for pain but their efficacy is diminished with the development of tolerance following repeated administration. Recently, we found that morphine activated ERK in opioid-tolerant but not in naïve rats, suggesting that morphine activation of μ-opioid receptors is altered following repeated morphine administration. Here, we have tested the hypothesis that μ-opioid receptor activation of ERK in the ventrolateral periaqueductal gray (vlPAG) is dependent on dynamin, a protein implicated in receptor endocytosis.
EXPERIMENTAL APPROACHRats were made tolerant to repeated microinjections of morphine into the vlPAG. The effects of dynamin on ERK activation and antinociception were assessed by microinjecting myristoylated dominant-negative dynamin peptide (Dyn-DN) or a scrambled control peptide into the vlPAG. Microinjection of a fluorescent dermorphin analogue (DERM-A594) into the vlPAG was used to monitor μ-opioid receptor internalization.
KEY RESULTSMorphine did not activate ERK and Dyn-DN administration had no effect on morphine-induced antinociception in saline-pretreated rats. In contrast, morphine-induced ERK activation in morphine-pretreated rats that was blocked by Dyn-DN administration. Dyn-DN also inhibited morphine antinociception. Finally, morphine reduced DERM-A594 internalization only in morphine-tolerant rats indicating that μ-opioid receptors were internalized and unavailable to bind DERM-A594.
CONCLUSIONS AND IMPLICATIONSRepeated morphine administration increased μ-opioid receptor activation of ERK signalling via a dynamin-dependent mechanism. These results demonstrate that the balance of agonist signalling to G-protein and dynamin-dependent pathways is altered, effectively changing the functional selectivity of the agonist-receptor complex.
LINKED ARTICLESThis article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2
AbbreviationsDyn-DN, dominant-negative dynamin peptide; Dyn-scr, scrambled dynamin peptide; GRK, G-protein receptor kinase; vlPAG, ventrolateral periaqueductal gray
IntroductionThe antinociceptive effects of opioids are limited by the development of tolerance with repeated administration. The mechanism for tolerance has been difficult to identify because many signalling adaptations correlate with the development of tolerance (Christie, 2008;Williams et al., 2013). Opioid agonist binding to μ-opioid receptors induces phosphorylation of the receptor by G-protein receptor kinases (GRKs) and recruitment of proteins, including β-arrestin and dynamin, involved in the internalization of the receptor (Goodman et al., 1996; receptor nomenclature follows Alexander et al., 2013a). Ligand-biased signalling of μ-opioid receptors (McPherson et al., 2010; Kelly, 2013a,b) has been observed where specific agonists preferentially couple to specific effectors. Few studies have addressed whether ligandbiased...