A few years ago a connection between the elliptic genus of the K3 manifold and the largest Mathieu group M 24 was proposed. We study the elliptic genera for Calabi-Yau manifolds of larger dimensions and discuss potential connections between the expansion coefficients of these elliptic genera and sporadic groups. While the Calabi-Yau 3-fold case is rather uninteresting, the elliptic genera of certain Calabi-Yau d-folds for d > 3 have expansions that could potentially arise from underlying sporadic symmetry groups. We explore such potential connections by calculating twined elliptic genera for a large number of Calabi-Yau 5-folds that are hypersurfaces in weighted projected spaces, for a toroidal orbifold and two Gepner models.