Preeclampsia (PE) is regarded as a pregnancy-associated hypertension disorder that is related to excessive inflammatory responses. Although the gut microbiota (GM) and short-chain fatty acids (SCFAs) have been related to hypertension, their effects on PE remain unknown. We determined the GM abundance and faecal SCFA levels by 16S ribosomal RNA (rRNA) sequencing and gas chromatography, respectively, using faecal samples from 27 patients with severe PE and 36 healthy, pregnant control subjects. We found that patients with PE had significantly decreased GM diversity and altered GM abundance. At the phylum level, patients with PE exhibited decreased abundance of Firmicutes albeit increased abundance of Proteobacteria; at the genus level, patients with PE had lower abundance of Blautia, Eubacterium_rectale, Eubacterium_hallii, Streptococcus, Bifidobacterium, Collinsella, Alistipes, and Subdoligranulum, albeit higher abundance of Enterobacter and Escherichia_Shigella. The faecal levels of butyric and valeric acids were significantly decreased in patients with PE and significantly correlated with the above-mentioned differential GM abundance. We predicted significantly increased abundance of the lipopolysaccharide (LPS)-synthesis pathway and significantly decreased abundance of the G protein-coupled receptor (GPCR) pathway in patients with PE, based on phylogenetic reconstruction of unobserved states (PICRUSt). Finally, we evaluated the effects of oral butyrate on LPS-induced hypertension in pregnant rats. We found that butyrate significantly reduced the blood pressure (BP) in these rats. In summary, we provide the first evidence linking GM dysbiosis and reduced faecal SCFA to PE and demonstrate that butyrate can directly regulate BP in vivo, suggesting its potential as a therapeutic agent for PE.