Semen Strychni (SS), known as an agonist of central nervous system, is a traditional herb widely used in treating amyotrophic lateral sclerosis (ALS) in small doses to relieve muscle weakness and improve muscle strength. However, the potential mechanisms and the main components of SS in treating ALS remain unclear. To explore the underlying mechanism of SS in treating ALS based on network pharmacology and molecular docking. The active components of SS were obtained using TCMSP, Herb, ETCM, and BATMAN-TCM. The targets of SS were gained from PharmMapper. The targets of ALS were searched on Genecards, Drugbank, DisGeNET, OMIM, TTD and GEO database. After obtaining the coincidence targets, we submitted them to the STRING database to build a protein-protein interaction network. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed subsequently. The active components and targets were further investigated using molecular docking technology. 395 targets of SS and 1925 targets of ALS were obtained with 125 common targets. The protein-protein interaction analysis indicated that SRC, AKT1, MAPK1, EGFR, and HSP90AA1 received the higher degree value and were considered the central genes. The Ras, PI3K-Akt, and MAPK signaling pathway could be involved in the treatment of ALS. Brucine-N-oxide obtained the lowest binding energy in molecular docking. This study explored the mechanism of SS in the treatment of ALS and provides a new perspective for future study. However, further experimental studies are needed to validate the therapeutic effect.