BTF3, which was originally recognized as a basal transcription factor, has been known to be involved in transcription initiation, translational regulation and protein localization in many eukaryotic organisms. However, its function remains largely unknown in plant species. In the present study, we analyzed a BTF3-related sequence in Oryza sativa L. subsp. japonica, which shares the conserved domain of a nascent polypeptide-associated complex with human BTF3, and was referred to as Osj10gBTF3. The expression of Osj10gBTF3 was primarily constitutive and generally modulated by salt, high temperature and exogenous phytohormone stress. The Osj10gBTF3::EGFP (enhanced green fluorescence protein) fusion protein was localized in both the nucleus and cytoplasmic membrane system. Inhibition of Osj10gBTF3 led to significant morphological changes in all detected tissues and organs, with a reduced size of between 25% and 52%. Furthermore, the pollen that developed was completely sterile, which was correlated with the altered expression of two Rf (fertility restorer)-like genes that encode pentatricopeptide repeat-containing proteins OsPPR676 and OsPPR920, translational initiation factors OseIF3e and OseIF3h, and the heat shock protein OsHSP82. These findings were verified through a yeast two-hybrid assay using a Nipponbare callus cDNA library as bait followed by the reverse transcription-PCR analysis of total leaf or anther RNAs. Our demonstration of the important role of Osj10gBTF3 in rice growth and development provides new insights showing that more complex regulatory functions are associated with BTF3 in plants.