IntroductionMutations in INPP5D, which encodes for the SH2‐domain‐containing inositol phosphatase SHIP‐1, have recently been linked to an increased risk of developing late‐onset Alzheimer's disease. While INPP5D expression is almost exclusively restricted to microglia in the brain, little is known regarding how SHIP‐1 affects neurobiology or neurodegenerative disease pathogenesis.MethodsWe generated and investigated 5xFAD Inpp5dfl/flCx3cr1Ert2Cre mice to ascertain the function of microglial SHIP‐1 signaling in response to amyloid beta (Aβ)‐mediated pathology.ResultsSHIP‐1 deletion in microglia led to substantially enhanced recruitment of microglia to Aβ plaques, altered microglial gene expression, and marked improvements in neuronal health. Further, SHIP‐1 loss enhanced microglial plaque containment and Aβ engulfment when compared to microglia from Cre‐negative 5xFAD Inpp5dfl/fl littermate controls.DiscussionThese results define SHIP‐1 as a pivotal regulator of microglial responses during Aβ‐driven neurological disease and suggest that targeting SHIP‐1 may offer a promising strategy to treat Alzheimer's disease.Highlights
Inpp5d deficiency in microglia increases plaque‐associated microglia numbers.
Loss of Inpp5d induces activation and phagocytosis transcriptional pathways.
Plaque encapsulation and engulfment by microglia are enhanced with Inpp5d deletion.
Genetic ablation of Inpp5d protects against plaque‐induced neuronal dystrophy.