We investigate the generalised diffeomorphisms in M-theory, which are gauge
transformations unifying diffeomorphisms and tensor gauge transformations.
After giving an En(n)-covariant description of the gauge transformations and
their commutators, we show that the gauge algebra is infinitely reducible,
i.e., the tower of ghosts for ghosts is infinite. The Jacobiator of generalised
diffeomorphisms gives such a reducibility transformation. We give a concrete
description of the ghost structure, and demonstrate that the infinite sums give
the correct (regularised) number of degrees of freedom. The ghost towers belong
to the sequences of rep- resentations previously observed appearing in tensor
hierarchies and Borcherds algebras. All calculations rely on the section
condition, which we reformulate as a linear condition on the cotangent
directions. The analysis holds for n < 8. At n = 8, where the dual gravity
field becomes relevant, the natural guess for the gauge parameter and its
reducibility still yields the correct counting of gauge parameters.Comment: 24 pp., plain tex, 1 figure. v2: minor changes, including a few added
ref