Rupture of the basement membrane in fused palate tissue can cause the palate to separate after fusion in mice, leading to the development of cleft palate. Here, we further elucidate the mechanism of palatal separation after palatal fusion in 8–10-week-old ICR female mice. On day 12 of gestation, 40 μg/kg of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), sufficient to cause cleft palate in 100% of mice, was dissolved in 0.4 mL of olive oil containing toluene and administered as a single dose via a gastric tube. Fetal palatine frontal sections were observed by H&E staining, and epithelial cell adhesion factors, apoptosis, and cell proliferation were observed from the anterior to posterior palate. TUNEL-positive cells and Ki67-positive cells were observed around the posterior palatal dissection area of the TCDD-treated group. Moreover, in fetal mice exposed to TCDD, some fetuses exhibited cleft palate dehiscence during fusion. The results suggest that palatal dehiscence may be caused by abnormal cell proliferation in epithelial tissues, decreased intercellular adhesion, and inhibition of mesenchymal cell proliferation. By elucidating the mechanism of cleavage after palatal fusion, this research can contribute to establishing methods for the prevention of cleft palate development.