Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Discussion papers of the WZB serve to disseminate the research results of work in progress prior to publication to encourage the exchange of ideas and academic debate. Inclusion of a paper in the discussion paper series does not constitute publication and should not limit publication in any other venue. The discussion papers published by the WZB represent the views of the respective author(s) and not of the institute as a whole.
Terms of use:
Documents in
Copyright remains with the authors.ABSTRACT A prime function of many major World Wide Web applications is Online Service Allocation (OSA), the function of matching individual consumers with particular services/goods (which may include loans or jobs as well as products) each with its own producer. In the applications of interest, consumers are free to choose, so OSA usually takes the form of personalized recommendation or search in practice. The performance metrics of recommender and search systems currently tend to focus on just one side of the match, in some cases the consumers (e.g. satisfaction) and in other cases the producers (e.g., profit). However, a sustainable OSA platform needs benefit both consumers and producers; otherwise the neglected party eventually may stop using it.In this paper, we show how to adapt economists' traditional idea of maximizing total surplus (the sum of consumer net benefit and producer profit) to the heterogeneous world of online service allocation, in an effort to promote the web intelligence for social good in online eco-systems. Modifications of traditional personalized recommendation algorithms enable us to apply Total Surplus Maximization (TSM) to three very different types of real-world tasks -e-commerce, P2P lending and freelancing. The results for all three tasks suggest that TSM compares very favorably to currently popular approaches, to the benefit of both producers and consumers.