This paper conducts an in-depth research analysis on the precise employment of college graduates in the context of big data using a number-driven approach. The textual information of the study is obtained by using in-depth interviews, and the evaluation index system of college students’ employment quality is constructed by combining the step-by-step coding method with rooting theory. The research on the current situation of employment recommendation platform research and the application status of big data in the employment recommendation platform is explored by using a bibliometric approach. And the innovative use of web crawler technology is used to comprehensively understand the recommendation function and status quo of the same type of recommendation platform, which provides a reference for the research of this platform. Based on the preliminary analysis of platform requirements and overall design, the overall design and functional implementation of the big data employment recommendation platform are carried out by using big data crawler technology, big data architecture technology, text mining technology, database technology, etc. The construction of a recommendation module based on user history information, a recommendation based on real-time user online behavior data, and hybrid recommendation carried out on the recommendation module to grasp all-round the platform is built based on a stakeholder perspective. Based on the platform construction, the initial platform operation and maintenance management mechanism was established from the stakeholder’s perspective. The Pearson correlation coefficient is used to objectively evaluate the current situation of talent supply in universities and talent demand in enterprises from the perspective of image and data. In the research on the development status of the big data education industry, the Lorenz curve and Gini coefficient are used to match the status of new big data majors with their college construction volume in each province and provide data support for the reasonable adjustment of majors setting in each province according to the education level.