Psoriasis increases the risk of developing various cancers, including colon cancer. The pathogenesis of the co‐occurrence of psoriasis and cancer is not yet clear. This study is aimed at analyzing the pathogenesis of psoriasis combined with cancer by bioinformatic analysis. Skin tissue data from psoriasis (GSE117239) and intestinal tissue data from colon cancer (GSE44076) were downloaded from the GEO database. One thousand two hundred ninety‐six common differentially expressed genes and 688 common shared genes for psoriasis and colon cancer were determined, respectively, using the limma R package and weighted gene coexpression network analysis (WGCNA) methods. The results of the GO and KEGG enrichment analyses were mainly related to the biological processes of the cell cycle. Thirteen hub genes were selected, including AURKA, DLGAP5, NCAPG, CCNB1, NDC80, BUB1B, TTK, CCNB2, AURKB, TOP2A, ASPM, BUB1, and KIF20A. These hub genes have high diagnostic value, and most of them are positively correlated with activated CD4 T cells. Three hub transcription factors (TFs) were also predicted: E2F1, E2F3, and BRCA1. These hub genes and hub TFs are highly expressed in various cancers. Furthermore, 251 drugs were predicted, and some of them overlap with existing therapeutic drugs for psoriasis or colon cancer. This study revealed some genetic mechanisms of psoriasis and cancer by bioinformatic analysis. These hub genes, hub TFs, and predicted drugs may provide new perspectives for further research on the mechanism and treatment.