PurposeDry eye syndrome is a multifactorial chronic disabling disease mainly caused by the functional disruptions in the lacrimal gland. The treatment involves palliation like ocular surface lubrication and rehydration. Cell therapy involving replacement of the gland is a promising alternative for providing long-term relief to patients. This study aimed to establish functionally competent lacrimal gland cultures in–vitro and explore the presence of stem cells in the native gland and the established in-vitro cultures.MethodsFresh human lacrimal gland from patients undergoing exenteration was harvested for cultures after IRB approval. The freshly isolated cells were evaluated by flow cytometry for expression of stem cell markers ABCG2, high ALDH1 levels and c-kit. Cultures were established on Matrigel, collagen and HAM and the cultured cells evaluated for the presence of stem cell markers and differentiating markers of epithelial (E-cadherin, EpCAM), mesenchymal (Vimentin, CD90) and myofibroblastic (α-SMA, S-100) origin by flow cytometry and immunocytochemistry. The conditioned media was tested for secretory proteins (scIgA, lactoferrin, lysozyme) post carbachol (100 µM) stimulation by ELISA.ResultsNative human lacrimal gland expressed ABCG2 (mean±SEM: 3.1±0.61%), high ALDH1 (3.8±1.26%) and c-kit (6.7±2.0%). Lacrimal gland cultures formed a monolayer, in order of preference on Matrigel, collagen and HAM within 15–20 days, containing a heterogeneous population of stem-like and differentiated cells. The epithelial cells formed ‘spherules’ with duct like connections, suggestive of ductal origin. The levels of scIgA (47.43 to 61.56 ng/ml), lysozyme (24.36 to 144.74 ng/ml) and lactoferrin (32.45 to 40.31 ng/ml) in the conditioned media were significantly higher than the negative controls (p<0.05 for all comparisons).ConclusionThe study reports the novel finding of establishing functionally competent human lacrimal gland cultures in-vitro. It also provides preliminary data on the presence of stem cells and duct-like cells in the fresh and in-vitro cultured human lacrimal gland. These significant findings could pave way for cell therapy in future.