The resulting inflammatory reaction to polyethylene (PE) wear debris, which may result in osteolysis, is still considered to be a main reason for aseptic loosening. In addition to the primary wear in hip joint replacements caused by head-insert articulation, relative motions between the PE liner and the metal cup may cause additional wear. In order to limit this motion, various locking mechanisms were used. We investigated three different locking mechanisms (Aesculap, DePuy, and Zimmer Biomet) to address the resulting relative motion between the acetabular cup and PE liner and the maximum disassembly force. A standardized setting with increasing load levels was used in combination with optically based three-dimensional measurements. In addition the maximum disassembly forces were evaluated according to the ASTM F1820-13 standard. Our data showed significant differences between the groups, with a maximum relative motion at the maximum load level (3.5 kN) of 86.5 ± 32.7 µm. The maximum axial disassembly force was 473.8 ± 94.6 N. The in vitro study showed that various locking mechanisms may influence cup-inlay stability.Materials 2020, 13, 1392 2 of 9 locking mechanisms are used. It is assumed that a firm connection of the components will reduce the relative motion and the particle migration inside the cup system [13,14]. Another rather rare reason for revision is the dislocation between cup and PE liner, which presumably can be attributed to the acetabular locking mechanism.The aim of this study was to evaluate specific locking mechanisms regarding the resulting relative motion between the acetabular cup and the PE liner. In addition, the maximum dissembling forces were investigated. For this purpose, three implant designs were tested, to determine if different types of locking mechanisms affect the magnitude of relative motion and dissembling force.