In the last decade, cloud computing has changed dramatically. More providers and administration contributions have entered the market, and cloud infrastructure, once limited to single-provider data centers, is expanding. This article discusses the shifting cloud foundation and the benefits of decentralizing computing from data centers. These patterns necessitate novel cloud computing architectures. These models may affect linking people and devices, data-intensive computing, the service space, and self-learning frameworks. Finally, we compiled a list of issues to consider while assessing modern cloud frameworks. Architectural and urban design projects breach scale and predictability constraints and seek enhanced competency, maintainability, energy performance, and cost-efficiency. Simulation and large-scale information processing drive this cycle. Advances in calculations and computer power help address the complex elements of a coordinated whole-structure framework. Adaptability is a barrier to the configuration, control, and development of whole-system frameworks. This position paper proposes several solutions for semi-or fully automated projects, such as short-plan boundary space exploration, large-scope high-accuracy simulation, and integrated multidisciplinary development. These computer-intensive operations were previously only accessible to the exam network. Once empowered by cloud computing and high-performance computing, these methods can stimulate intelligent plan measures, leading to enhanced results and shorter development times.