2018
DOI: 10.1145/3161197
|View full text |Cite
|
Sign up to set email alerts
|

Early Destination Prediction with Spatio-temporal User Behavior Patterns

Abstract: Predicting user behavior makes it possible to provide personalized services. Destination prediction (e.g. predicting a future location) can be applied to various practical applications. An example of destination prediction is personalized GIS services, which are expected to provide alternate routes to enable users to avoid congested roads. However, the destination prediction problem requires critical trade-offs between timing and accuracy. In this paper, we focus on early destination prediction as the central … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
12
0
4

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 28 publications
(16 citation statements)
references
References 18 publications
0
12
0
4
Order By: Relevance
“…3 To understand how different factor groups influence model prediction, we built three types of models, (a) using just the affective states of the participant, (b) using just the extrinsic trip characteristics, and (c) using a combination of affective states and extrinsic trip characteristics. The reasoning is that the approximation of trip characteristics such as route or traffic can be achieved by navigational systems or analysis of past travel patterns [26]; detecting the affective state, however, is a more challenging task and is an area of active research [55].…”
Section: Predicting Responsiveness Using General Tripmentioning
confidence: 99%
“…3 To understand how different factor groups influence model prediction, we built three types of models, (a) using just the affective states of the participant, (b) using just the extrinsic trip characteristics, and (c) using a combination of affective states and extrinsic trip characteristics. The reasoning is that the approximation of trip characteristics such as route or traffic can be achieved by navigational systems or analysis of past travel patterns [26]; detecting the affective state, however, is a more challenging task and is an area of active research [55].…”
Section: Predicting Responsiveness Using General Tripmentioning
confidence: 99%
“…Por ejemplo, conociendo los lugares que el usuario visitó en el pasado es posible inferir sus intereses [15] [16], lo cual es extremadamente útil en sistemas de recomendación. Uno de los tópicos más importantes en el estudio de movilidad de los usuarios, es la predicción de destinos [17]. Este tópico consiste en, una vez identificados los lugares que visita el usuario, aprender sus rutinas de movilidad y predecir cuándo y dónde serán sus próximas visitas.…”
Section: Contextounclassified
“…Por último, en cuarto lugar, al combinar distintas técnicas de predicción normalmente se consiguen mejores precisiones. Algunos autores han notado que distintas técnicas pueden funcionar mejor o peor para distintos usuarios, por lo que han propuesto combinar varias técnicas de predicción [121] [122] [114] [117] [128] [17]. La forma de combinar varía en cada trabajo.…”
Section: Símbolo Explicaciónunclassified
“…There is a rich history of UbiComp/IMWUT research concentrating on user behavior analysis [63]. In recent years, with the increasing importance of user experiences in system design, we are witnessing an increasing number of research studies in the IMWUT community [2,24,26,27,33,37,40,45,47,63,64] to understand user behavior. Zhang et al [63] tried to understand user behavior in group event decisions based on data collected from a mobile application, and they finally provided detailed novel insights in the event scheduling process of social groups.…”
Section: User Behaviormentioning
confidence: 99%