Doxorubicin is one of the most effective chemotherapeutic agents; however, it causes dose-dependent cardiomyopathy that may lead to heart failure. Conventional measures of ventricular function, such as fractional shortening, are insensitive in detecting early doxorubicin cardiomyopathy. We tested whether novel 2-dimensional radial strain echocardiography (2DSE) can detect early doxorubicin injury following chronic administration in a rat model. 14 male Sprague Dawley rats (240−260 g) received doxorubicin 2.5 mg/k IV per week for 10 (n=4) or 12 weeks (n=10); 17 controls received saline (10 weeks, n=7 and 12 weeks, n=10). Serial 2DSE from 0−12 weeks was done at the mid left ventricle using Vivid 7 echo (General Electric, Waukesha, WI, USA). With Q analysis software, radial strain was obtained. From the 2D image, anatomical M-mode through the anterior/inferior walls was used to measure fractional shortening. Fibrosis (Masson's trichrome) and caspase-3 activity were measured from excised hearts. Radial strain was lower in the doxorubicin group (12 week: 26.7 ±3 vs. 38.3±2.6%, p=0.006), with significant difference by 8 weeks whereas fractional shortening was lower with doxorubicin only after 12 weeks (30.2±1.7 vs. 37.6±1.4%, p=0.02). Doxorubicin group had lower cardiac mass (0.85±0.09 vs. 1.14±0.04 g, p=0.001), higher caspase-3 activity (1.95 ±0.2 fold increase over control, p<0.0001) and fibrosis (3.9±0.7 vs. 0.7±0.1%, p=0.005). Radial strain was related directly to cardiac mass (R=0.61, p=0.0007) and inversely to caspase-3 activity (R=−0.5, p=0.005). 2-dimensional radial strain echocardiography is useful in the early detection of doxorubicin cardiac injury and the reduction in radial strain is associated with histologic markers of doxorubicin cardiomyopathy.