It is generally accepted that the Arabian Peninsula has been uplifted by subcrustal processes.Positive residual depth anomalies from oceanic crust in the Red Sea and in the Gulf of Aden suggest that a region surrounding this peninsula is dynamically supported. Admittance calculations, surface wave tomography studies, and receiver function analyses all imply that regional topography is generated and maintained by some combination of mantle convective circulation and lithospheric thickness changes. Despite these significant advances, the spatial and temporal uplift rate history of the Arabian Peninsula is not well known. Here we show that a regional uplift rate history can be obtained by jointly inverting 225 longitudinal river profiles that drain this peninsula. Our strategy assumes that shapes of individual river profiles are controlled by uplift rate history and moderated by erosional processes. We used local measurements of incision rate to calibrate the relevant erosional parameters. In our inverse algorithm, uplift rate is permitted to vary smoothly as a function of space and time but upstream drainage area remains invariant. We also assume that knickzone migration is not lithologically controlled. Implications of these important assumptions have been investigated. Our results suggest that the Arabian Peninsula underwent two phases of asymmetric uplift during the last 20-30 Ma at rates of 0.05-0.1 mm a 21 . The southwestern flank of the peninsula has been uplifted by 1.5-2.5 km. Regional stratigraphic constraints, the age and composition of volcanism, paleosol formation, incised peneplains, emergent marine terraces, and thermochronometric measurements corroborate our calculated patterns of uplift. Progressive development of three domal swells along the western margin of the peninsula is consistent with localized upwelling of hot asthenospheric mantle.