This study evaluates the wellbore shear bond strength of oil-well cement pastes containing nano-SiO2 and nano-TiO2 particles with an average of 20 ± 5 nm particle sizes. The nanoparticles were selected by weight of cement at proportions equivalent to 1, 2, 3 and 4%. The findings demonstrated that nanoparticles significantly increased the shear bond strength, and the strength increase was dependent on the nanoparticle types, dosage and curing period of the specimens. Due to effective pozzolanic activity, nano-SiO2 provided higher shear bond strength compared to nano-TiO2. The specimens containing 3% nano-SiO2 cured for 28 days displayed the utmost shear bond strength results (0.553 MPa). The optimal replacement dosage was 3% for all nanoparticles. The particle type did not affect the optimum nanoparticles replacement content. To examine the influence of nanoparticles on cement-formation bonding, a Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and thermogravimetric technique were used.