2023
DOI: 10.3390/math11133026
|View full text |Cite
|
Sign up to set email alerts
|

Early Identification of Risk Factors in Non-Alcoholic Fatty Liver Disease (NAFLD) Using Machine Learning

Abstract: Liver diseases are a widespread and severe health concern, affecting millions worldwide. Non-alcoholic fatty liver disease (NAFLD) alone affects one-third of the global population, with some Latin American countries seeing rates exceeding 50%. This alarming trend has prompted researchers to explore new methods for identifying those at risk. One promising approach is using Machine Learning Algorithms (MLAs), which can help predict critical factors contributing to liver disease development. Our study examined ni… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 57 publications
0
0
0
Order By: Relevance