Early-life adversity, even when transient, can have lasting effects on individual phenotypes and reduce lifespan across species. If these effects can be mitigated by a high-quality later-life environment, then differences in future resources may explain variable resilience to early-life adversity. Using data from over 1000 wild North American red squirrels, we tested the hypothesis that the costs of early-life adversity for adult lifespan could be offset by later-life food abundance. We identified six adversities that reduced juvenile survival in the first year of life, though only one—birth date—had continued independent effects on adult lifespan. We then built a weighted early-life adversity (wELA) index integrating the sum of adversities and their effect sizes. Greater weighted early-life adversity predicted shorter adult lifespans in males and females, but a naturally occurring food boom in the second year of life ameliorated this effect. Experimental food supplementation did not replicate this pattern, despite increasing lifespan, indicating that the buffering effect of a future food boom may hinge on more than an increase in available calories. Our results suggest a non-deterministic role of early-life conditions for later-life phenotype, highlighting the importance of evaluating the consequences of early-life adversity in the context of an animal's entire life course.