Intrauterine metabolic reprogramming occurs in obese mothers during gestation, putting the offspring at high risk of developing obesity and associated metabolic disorders even before birth. We have generated a mouse model of maternal high-fat diet-induced obesity that recapitulates the metabolic changes seen in humans. Here, we profiled and compared the metabolic characteristics of bone marrow cells of newly weaned 3-week-old offspring of dams fed either a high-fat (Off-HFD) or a regular diet (Off-RD). We utilized a state-of-the-art targeted metabolomics approach coupled with a Seahorse metabolic analyzer. We revealed significant metabolic perturbation in the offspring of HFD-fed vs. RD-fed dams, including utilization of glucose primarily via oxidative phosphorylation, and reduction in levels of amino acids, a phenomenon previously linked to aging. Furthermore, in the bone marrow of three-week-old offspring of high-fat diet-fed mothers, we identified a unique B cell population expressing CD19 and CD11b, and found increased expression of Cyclooxygenase-2 (COX-2) on myeloid CD11b, and on CD11bhiB cells, with all the populations being significantly more abundant in offspring of dams fed HFD but not a regular diet. Altogether, we demonstrate that the offspring of obese mothers show metabolic and immune changes in the bone marrow at a very young age and prior to any symptomatic metabolic disease.