2019
DOI: 10.17146/aij.2019.860
|View full text |Cite
|
Sign up to set email alerts
|

Early Lung Cancer Detection Using Artificial Neural Network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 15 publications
(4 citation statements)
references
References 7 publications
0
3
0
1
Order By: Relevance
“…Moreover, other solutions focus on detecting misbehaving nodes in cITSs. These solutions aim to protect the system against threats carried out by legitimate yet compromised nodes, which is more challenging as those nodes are trusted and thus less suspicious [18]. Nonetheless, most of these solutions assume that the cITS is stationary.…”
Section: Related Workmentioning
confidence: 99%
“…Moreover, other solutions focus on detecting misbehaving nodes in cITSs. These solutions aim to protect the system against threats carried out by legitimate yet compromised nodes, which is more challenging as those nodes are trusted and thus less suspicious [18]. Nonetheless, most of these solutions assume that the cITS is stationary.…”
Section: Related Workmentioning
confidence: 99%
“…Regarding the screening and early risk prediction of whether a patient has lung cancer, Cheng et al [ 30 ] proposed a new clinical decision support system for screening chest CT images for the presence or absence of lung nodules. Pandiangan et al [ 31 ] used a feedforward neural network to train an artificial neural network model with patients’ physical symptoms as binary data labels. This detects the presence of lung cancer in the patient’s body with an accuracy of 96.67%.…”
Section: Related Workmentioning
confidence: 99%
“…Pemantauan dosis radiasi yang diterima oleh organ tubuh manusia selama pemeriksaan dengan alat medis radiasi seperti metode bracytherapy payudara (Skowronek, 2017) tidak dapat diabaikan, bahkan merupakan suatu keharusan agar dapat memastikan dampak radiasi terhadap keselamatan pasien dan pekerja radiasi. Setiap perlakuan paparan radiasi pada pasien harus menerapkan prinsip proteksi radiasi, yaitu menerapkan radiasi serendah mungkin dengan kualitas diagnostik sebaik mungkin bagi pasien (Pandiangan et al, 2019). Beberapa perangkat lunak pemantauan dosis telah dikembangkan guna memantau dan mengontrol distribusi dosis sebelum (Pandiangan et al, 2020) dan selama pemeriksaan pasien menggunakan alat medis radiasi pengion.…”
Section: Pendahuluanunclassified