Physical inactivity remains in high levels after cardiac surgery, reaching up to 50%. Patients present a significant loss of functional capacity, with prominent muscle weakness after cardiac surgery due to anesthesia, surgical incision, duration of cardiopulmonary bypass, and mechanical ventilation that affects their quality of life. These complications, along with pulmonary complications after surgery, lead to extended intensive care unit (ICU) and hospital length of stay and significant mortality rates. Despite the well-known beneficial effects of cardiac rehabilitation, this treatment strategy still remains broadly underutilized in patients after cardiac surgery. Prehabilitation and ICU early mobilization have been both showed to be valid methods to improve exercise tolerance and muscle strength. Early mobilization should be adjusted to each patient’s functional capacity with progressive exercise training, from passive mobilization to more active range of motion and resistance exercises. Cardiopulmonary exercise testing remains the gold standard for exercise capacity assessment and optimal prescription of aerobic exercise intensity. During the last decade, recent advances in healthcare technology have changed cardiac rehabilitation perspectives, leading to the future of cardiac rehabilitation. By incorporating artificial intelligence, simulation, telemedicine and virtual cardiac rehabilitation, cardiac surgery patients may improve adherence and compliance, targeting to reduced hospital readmissions and decreased healthcare costs.