During arterial aneurysm formation, levels of the membraneanchored matrix metalloproteinase, MT1-MMP, are elevated dramatically. Although MT1-MMP is expressed predominately by infiltrating macrophages, the roles played by the proteinase in abdominal aortic aneurysm (AAA) formation in vivo remain undefined. Using a newly developed chimeric mouse model of AAA, we now demonstrate that macrophage-derived MT1-MMP plays a dominant role in disease progression. In wild-type mice transplanted with MT1-MMP-null marrow, aneurysm formation induced by the application of CaCl 2 to the aortic surface was almost completely ablated. Macrophage infiltration into the aortic media was unaffected by MT1-MMP deletion, and AAA formation could be reconstituted when MT1-MMP ؉/؉ macrophages, but not MT1-MMP ؉/؉ lymphocytes, were infused into MT1-MMP-null marrow recipients. In vitro studies using macrophages isolated from either WT/MT1-MMP ؊/؊ chimeric mice, MMP-2-null mice, or MMP-9-null mice demonstrate that MT1-MMP alone plays a dominant role in macrophage-mediated elastolysis. These studies demonstrate that destruction of the elastin fiber network during AAA formation is dependent on macrophage-derived MT1-MMP, which unexpectedly serves as a direct-acting regulator of macrophage proteolytic activity.
Development and progression of abdominal aortic aneurysm (AAA)2 is a complex process that, untreated, can lead to tissue failure, hemorrhage, and death (1). Destruction of the orderly elastin lamellae of the vessel wall is considered the sine qui non of arterial aneurysm formation (2) as adult tissues cannot regenerate normal elastin fibers (3). Moreover, the elastin degradation products are chemotactic for inflammatory cells and serve to amplify the local injury (4). Although several types of elastolytic proteases are elevated in AAA tissue (5-9), studies using murine models of AAA and targeted protease deletion suggest that matrix metalloproteinases (MMPs), particularly the secreted proteases, MMP-2 and MMP-9, play key roles in the pathologic remodeling of the elastin lamellae that lead to AAA (7,8).Membrane-type 1 MMP (MT1-MMP) is the prototypical member of a family of membrane-tethered MMPs (10). Recent studies indicate that MT1-MMP expression is elevated in human AAA tissues and that infiltrating macrophages are the primary source of the proteinase in aortic lesions (11-13). Although indirect evidence suggests that MT1-MMP may participate in the control of monocyte/macrophage motile responses as well as interactions with the vessel wall during transmigration (14, 15), the role(s) played by MT1-MMP in regulating macrophage proteolytic activity or AAA formation in vivo remains undefined.Using a murine model of AAA and mice with a targeted deletion of MT1-MMP in myelogenous cell populations, we now demonstrate that macrophage-derived MT1-MMP is required for elastin degradation and aneurysm formation. Importantly, macrophages are not dependent on MT1-MMP for infiltrating aortic tissues but instead use the protease to directly regulate th...