Body elongation in vertebrates can be achieved by lengthening of the vertebrae or by an increase in their number. In salamanders, longer bodies are mostly associated with greater numbers of vertebrae in the trunk or tail region. However, studies on the relative contribution of the length of single vertebra to body elongation are lacking. In this study, we focus on evolutionary and ontogenetic changes in differentiation of the trunk vertebrae and the relative contribution of individual vertebrae to trunk lengthening in Triturus newts, a monophyletic group of salamanders that shows remarkable disparity in body shape. We compared juveniles and adults of the most elongated T. dobrogicus, which has 17 trunk vertebrae, with juveniles and adults of two closely related species (T. ivanbureschi and T. anatolicus belonging to the T. karelinii species complex) representing a stout and robust morphotype with thirteen trunk vertebrae. We show that trunk vertebrae are uniform in size at the juvenile stage of both analyzed morphotypes. In adults, the trunk vertebrae of the elongated T. dobrogicus are largely uniform, while in those of T. anatolicus, the first two vertebrae differ from the remaining trunk vertebrae. There was no difference in the relative contribution of individual vertebrae to body lengthening between species or stages. We conclude that body elongation in Triturus newts is achieved by increasing the number of vertebrae but not their length.